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1. INTRODUCTION  
       The study of flows through curved ducts and 

channels has been and continuous to be an area of 

paramount interest of many researchers because of the 

diversity of their practical applications in fluids 

engineering, such as in fluid transportation, turbo 

machinery, refrigeration, air conditioning systems, heat 

exchangers, chemical reactors, ventilators, centrifugal 

pumps, internal combustion engines and blade- to-blade 

passage for cooling system in modern gas turbines. 

Blood flow in the human and other animals also 

represents an important application of this subject 

because of the curvatures of many blood vessels, 

particularly the aorta.  

Considering the non-linear nature of the 

Navier-Stokes equation, the existence of multiple 

solutions does not come as a surprise. However, an early 

complete bifurcation study of fully developed flows in a 

curved duct was conducted by Winters (1987). Yanase et 

al., (2005) performed numerical investigation of 

isothermal and non-isothermal flows through a curved 

duct of rectangular cross-section. Mondal et al. (2006) 

performed numerical prediction of non-isothermal flows 

through a curved square duct over a wide range of the 

curvature and the Dean number. Recently, Mondal et al. 

(2007) numerically investigated the bifurcation diagram 

for two-dimensional steady flow through a curved square 

duct. Very recently, Mondal et al. (2009, 2010) 

performed bifurcation structure of the steady solutions 

and investigated linear stability of the solutions for the 

flow through a curved rectangular duct of small aspect 

ratio.  

           Time dependent analysis of fully developed 

curved duct flows was initiated by Yanase and 

Nishiyama (1988) for a rectangular cross section. 

Mondal et al. (2007) performed numerical prediction of 

the solution structure, stability and transitions of 

isothermal flow through a curved square duct. They 

showed that there is a close relationship between 

unsteady solutions and the bifurcation diagram of steady 

solutions. To the best of the authors’ knowledge, however, 

there has not yet been done any substantial work 

studying the effects of large aspect ratio on unsteady 

solutions through a curved rectangular duct flows. This 

paper is, therefore, an attempt, to fill up this gap with a 

view to study the non-linear nature of the unsteady 

solutions for large aspect ratio, because this type of flow 

of often encountered in engineering applications. 

     In the present study, a numerical result is presented 

for the fully developed two-dimensional flow of viscous 

incompressible fluid through a curved rectangular duct. 

The main objective of the present study is to investigate 

the unsteady flow through a curved rectangular channel 

in the presence of buoyancy effect. 

 
2. MATHEMATICAL FORMULATION 
        Consider a viscous incompressible fluid streaming 

through a curved duct with rectangular cross-sections. 
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The coordinate system with relevant notations is shown 

in Figure 1. It assumed that the flow is uniform in the 

z-direction which is driven by a constant pressure 

gradient G along the centre of the duct. It is assumed that 

the outer wall of the duct is heated while the inner wall 

cooled. The temperature of the outer wall is TT0  

and that of the inner wall is TT0 , where T > 0. u, v 

and w are the velocity components in the x-, y- and 

z-directions, respectively. The variables are 

non-dimensionalized by using the representative length 

and the representative velocity. 

 
Fig 1. Coordinate system of the curved rectangular 

duct. 

 

The sectional stream function yx,  is introduced in 

the x- and y- directions as 
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Then the basic equations for ,w and T are derived 

from the Navier-Stockes equations as 
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The non-dimensional parameters Dn, the Dean number, 

Gr , the Grashof number  and Pr ,  the Prandtl number, 

which appear  in equations (2) to (4) are defined as: 

Pr,,
2

2

33 lTg
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lGl
Dn . 

Here, l is the aspect ratio defined as 
d

h
l and δ is the 

curvature.                                    

The boundary conditions for w  and  are used as                   
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and the temperature T  is assumed to be constant on the 

walls as: 

          xxTyTyT )1,(,1),1(,1),1(               (6) 

 

3. NUMERICAL CALCULATION 
In order to obtain the numerical solutions, 

spectral method is used. The main objective of the 

method is to use the expansion of the polynomial 

functions that is the variables are expanded in the series 

of functions consisting of Chebyshev polynomials. The 

expansion function )(xn  and  )(xn  are expressed as  
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where ))(coscos()( 1 xnxCn  is the 
thn  order 

Chebyshev polynomial. ),,(),,,( tyxtyxw and 

),,( tyxT  are expanded in terms of the expansion 

functions )(xn  and )(xn  as: 
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where M  and N  are the truncation numbers in the x  

and y  directions respectively. Unsteady solutions are 

obtained by using Crank-Nicolson and Adams-Bashforth 

methods together with the function expansion and 

collocation methods.  

 

4. RESISTANT COEFFICIENT  

     The resistant coefficient  is used as the 

representative quantity of the flow state and is generally 
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used in fluids engineering, defined as  
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where quantities with an 
*

1P  be asterisk denote 

dimensional ones, stands for the mean over the cross 

section of the duct and  dlddlddh 44/224*
 

is the hydraulic diameter. The main axial velocity 
*

 

is calculated by  
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Since ,/ *
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1 GPP z  is related to the mean 

non-dimensional axial velocity     as    
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where vd /2 *
.  

 

5. RESULTS AND DISCUSSION 
 

5.1 Case I: Dn=100 
In order to investigate the non-linear behavior 

of the unsteady solutions, time-evolution calculation of 

the resistance coefficient  is performed for the curved 

rectangular duct of aspect ratio 4. Time evolution of  for 

100Dn and Gr = 100, 500, 1000, 1500 and 2000 is 

shown in Fig. 2, where it is seen that the flow is 

steady-state for Gr = 100, periodic at Gr = 500 and 

multi-periodic at Gr = 1000, 1500 and 2000. To show the 

multi-periodic oscillation more clearly, we show time 

evolution of  for 100Dn and Gr =1000 in Fig. 3(a), 

where we see the flow is multi-periodic. To justify 

whether the flow is purely multi-periodic, we draw phase 

spaces of the time change of  as shown in Fig. 3(b), 

where multi-periodic orbit is seen. Then we draw some 

contours of secondary flow patterns and temperature 

distributions in Fig. 4, where we observe that the 

unsteady flow at 100Dn and Gr =1000 oscillates 

between asymmetric two-vortex solutions.  

 

     
Fig 2. Time evolution of  for the unsteady solutions at 

Dn =100 and 2000,1500,1000,500,100Gr for the 

aspect ratio 4. 
 

     

        (a) 

      
                                                 (b) 

Fig 3. (a) Time evolution of  for the unsteady solutions 

at Dn =100 and 1000Gr for aspect ratio 4. (b) Phase 

plot in the plane, where dxdy  
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            t     15.0      16.0      17.0     18.0    19.0                           
Fig 4. Contours of secondary flow and temperature 

profiles for 100Dn and 1000Gr at aspect ratio 4. 
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5.2 Case II: Dn=500 
     Then we investigate the non-linear behavior of the 

unsteady solutions by time-evolution calculation of the 

resistance coefficient  for the curved rectangular duct of 

aspect ratio 4 at Dn =500 for various values of the 

Grashof numbers. Time evolution of  for 

500Dn and Gr = 100, 500, 1000, 1500 and 2000 is 

shown in Fig. 5, where it is found that the flow is chaotic 

at any value of Gr for Dn = 500. To show the chaotic 

oscillation more clearly, we show time evolution of  for 

500Dn and Gr =1000 in Fig. 6(a), where we see the 

flow is chaotic. To justify whether the flow is purely 

chaotic, we draw phase spaces of the time change of  for 

Dn = 500 and Gr = 1000, for example, as shown in Fig. 

6(b), where the chaotic orbit is seen. Then we draw some 

contours of secondary flow patterns and temperature 

distributions in Fig. 7 at Dn = 500 and Gr = 1000, where 

we observe that the unsteady flow at 100Dn and Gr 

=1000 is multi-vortex solution. Temperature distribution 

is consistent with secondary vortices.   

 
Fig 5. Time evolution of  for the unsteady solutions at 

Dn =500 and 2000,1500,1000,500,100Gr for the 

aspect ratio 4. 

 
                                              (a) 

 

                                                (b) 

Fig 6. (a) Time evolution of  for the unsteady solutions 

at Dn =500 and 1000Gr for aspect ratio 4. (b) Phase 

plot in the plane, where dxdy . 
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            t     14.0      14.2      14.4     14.6    14.8                           
Fig 7. Contours of secondary flow and temperature 

profiles for 500Dn and 1000Gr for the aspect 

ratio 4. 
 

Heat Transfer 

            In order to study the convective heat transfer 

from the heated wall to the fluid, the Nusselt number, Nu, 

is calculated for both the heated and cooled sidewalls. If 

the flow field is not steady, time-average of the Nusselt 

number, Nu , is calculated. In Fig. 8, we show variation 

of the steady values of the Nusselt number with the Dean 

number for Gr = 500 and the aspect ratio 4, where a thick 

solid line denotes cNu on the inner (cooled) sidewall 

and a thin solid line hNu  on the outer (heated) sidewall. 

Time-average of the Nusselt number, obtained by the 

time evolution computation of the Nusselt number for the 

heated and cooled sidewalls, is calculated at several 

values of the Dean number for both the periodic and 

chaotic solutions and plotted with the steady values of 

the Nusselt number in Fig. 8. It is found that 

time-averaged values of the Nusselt number are larger 

than the steady values of the Nusselt number for both the 

heated and cooled sidewalls, which suggests that 

occurrence of periodic or chaotic flow enhances heat 

transfer in the flow. It should be noted that the tendency 

of increasing the Nusselt number is larger on the heated 

sidewall than that on the cooled sidewall for larger Dean 

numbers i.e. where chaotic solutions occur, which can be 

explained by the fact that chaotic flow enhances heat 
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transfer more frequently than the periodic solutions. 

    
Fig 8. Variation of the Nusselt number (Nu) with the 

Dean number (Dn) for the steady values with time 

average of Nu for Gr = 500 and aspect ratio 4 (thick solid 

line: Nu for cooled sidewall, thin solid line: Nu for heated 

sidewall, Ο: time average of Nu for cooled sidewall, ×: 

time average of Nu for heated sidewall). 

 

6. CONCLUSIONS 
    In this study, we investigate non-linear behavior of the 

unsteady solutions by time-evolution calculations for the 

flow through a curved rectangular duct of aspect ratio 4 

for two cases of the Dean numbers, Case I: Dn =100 and 

Case II: Dn=500 over a wide range of the Grashof 

numbers. Time evolution calculation of the unsteady 

solutions for the aspect ratio 4 at Dn = 100 and at Gr = 

100, 500, 1000, 1500 and 2000 shows that the flow is 

steady-state for Gr=100 but periodic or multi-periodic 

for Gr = 500, 1000, 1500 and 2000, which oscillates 

between asymmetric two-vortex solutions. Then we 

studied time evolution of the unsteady solutions for Dn = 

500 at various values of Gr, and it is found that the flow is 

chaotic for all values of Gr investigated in this study. To 

justify whether the flow is periodic, multi-periodic or 

chaotic, phase space was found to be fruitful. Secondary 

flow patterns and temperature distributions are obtained 

at various parameters, and we obtained two- to 

ten-vortex solution. It is found that chaotic solution 

becomes strong at large Dn, which enhances heat transfer 

more frequently than the periodic states. 
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